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Freak wave statistics on collinear currents
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Linear refraction of waves on inhomogeneous current is known to provoke extreme
waves. We investigate the effect of nonlinearity on this phenomenon, with respect
to the variation of significant wave height, kurtosis and occurrence of freak waves.
Monte Carlo simulations are performed employing a modified nonlinear Schrödinger
equation that includes the effects of a prescribed non-potential current. We recommend
that freak waves should be defined by a local criterion according to the wave
distribution at each location of constant current, not by a global criterion that is
either averaged over, or insensitive to, inhomogeneities of the current. Nonlinearity
can reduce the modulation of significant wave height. Depending on the configuration
of current and waves, the kurtosis and probability of freak waves can either grow
or decrease when the wave height increases due to linear refraction. At the centre of
an opposing current jet where waves are known to become large, we find that freak
waves should be more rare than in the open ocean away from currents. The largest
amount of freak waves on an opposing current jet is found at the jet sides where the
significant wave height is small.

1. Introduction
It is well known that linear refraction due to currents can provoke large waves.

When waves encounter an opposing current, the wave length can be reduced and
both the wave height and steepness can be enhanced. When waves encounter an
opposing current jet, focusing can further enhance the wave intensity near the centre
of the jet. Linear refraction of waves by currents is known to cause navigational
problems, e.g. in the Agulhas current, river estuaries, rip currents, entrances in fjords
during outgoing tides and in tidal flows in the coastal zone (Longuet-Higgins &
Stewart 1961; Peregrine 1976; González 1984; Jonsson 1990; Lavrenov 1998; Bottin
& Thompson 2002; Mori, Liu & Yasuda 2002; MacIver, Simons & Thomas 2006;
MacMahan, Thornton & Reniers 2006). When the steepness thus increases, enhanced
nonlinear modulations should be anticipated (Stocker & Peregrine 1999; Lavrenov &
Porubov 2006). However, it is not well known how the enhanced effect of nonlinearity
will modify the wave height.

Our goal is to investigate how nonlinearity modifies both the significant wave
height and the occurrence of freak waves, for waves propagating on inhomogeneous
stationary currents. Two important reviews of freak waves (Kharif & Pelinovsky
2003; Dysthe, Krogstad & Müller 2008) argue that there is no unique definition of
freak waves, but it is generally agreed that they belong to the extreme tail of the
probability distribution. The most common definition is that a wave is freak when
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the wave height exceeds a threshold related to the significant wave height. However,
due to the inhomogeneity of the current, it becomes necessary to distinguish two
different types of statistical distributions for the surface waves. In the first case, the
distribution is given as a function of location, each location being associated with a
constant current, such that the threshold for freak waves will depend on the location.
In the second case, a common threshold is defined for the entire domain, either based
on an averaging over the entire inhomogeneous domain or based on a reference sea
state unaffected by currents and bottom topography.

We argue that, at least when the current is known and stationary, the optimal
choice is to use distributions specific to each location, and a freak wave criterion that
depends on location. The reason is that freak waves should be surprising, also after
the knowledge of the current has been taken into account. Some authors have made
the other choice (Lavrenov 1998, and references therein), thus identifying numerous
freak waves where large waves should be anticipated in any case.

Laboratory measurements of long-crested waves on a transversally uniform current,
show that strong opposing currents induce partial wave blocking significantly elevating
the limiting steepness and asymmetry of freak waves (Wu & Yao 2004). MacIver
et al. (2006) studied waves propagating across a shore-parallel current jet at oblique
incidence. They found that a following wave is refracted to a more current-parallel
direction with reduced wave height, while an opposing wave becomes more current
normal with increased wave height.

Our need to resolve wave phases on non-potential currents restricts us from
employing several obvious candidates. White (1999) allowed a prescribed current
with vorticity, and derived a wave action equation. Ray theory (White & Fornberg
1998) is used for tracking wave packets. Peregrine & Smith (1979) derived a nonlinear
Schrödinger equation useful for caustics where ray theory breaks down. The Zakharov
equation (Zakharov 1968) is limited to potential flows.

We shall derive a nonlinear Schrödinger equation that includes an inhomogeneous
current with horizontal shear. Some related models have already been published.
Stewartson (1977) derived a linear current modified Schrödinger equation to Dysthe
level limiting to potential theory. Turpin, Benmoussa & Mei (1983) considered the
effects of slowly varying depth and current, and derived a cubic Schrödinger equation
limiting to one horizontal dimension. Gerber (1987) used the variational principle to
derive a cubic Schrödinger equation for a non-uniform medium, limiting to potential
theory in one horizontal dimension. Mei (1989) allowed horizontal shear, and derived
the Schrödinger equation to linear order. Stocker & Peregrine (1999) extended the
modified nonlinear Schrödinger equation of Dysthe (1979) to include a prescribed
potential current induced by for example an internal wave. Our equation will be
taken up to cubic nonlinearity, and will include waves and currents in two horizontal
dimensions allowing weak horizontal shear.

2. The current modified nonlinear Schrödinger equation
Assume that the total velocity field vtot = v + V is a superposition of the velocity of

a wave field v = (u, v, w), and a prescribed stationary current field V =(U, V, W ) in
a Cartesian coordinate system (x, y, z). The x-axis is aligned with the principal
propagation direction of the waves. The z-axis is vertical with unit vector k
pointing upwards. z = 0 corresponds to the undisturbed free water surface. The
water is assumed inviscid, incompressible and deep with respect to the characteristic
wavelength.
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The Euler equation for the combined wave and current field can be written as:

∂v

∂t
+ vtot · ∇vtot = − 1

ρ
∇ptot − gk. (2.1)

The total pressure ptot = ps + p + P is a combination of the dynamic pressure due
to the wave field p, the dynamic pressure due to the current field P and the static
pressure ps = −ρgz + pa , where ρ is the density, g is the acceleration of gravity and
pa is the atmospheric pressure.

The surface boundary equations for the combined field at z = η + ζ can then be
written as:

∂η

∂t
+ vtot · ∇(η + ζ ) = w + W, (2.2a)

ptot = pa, (2.2b)

η and ζ are the surface displacements associated with the wave field and the current
field, respectively.

The vorticity of the waves γ = ∇ × v obeys the equation

∂γ

∂t
+ vtot · ∇γ − γ · ∇vtot = −v · ∇Γ + Γ · ∇v. (2.3)

If the vorticity of the current Γ = (Γx, Γy, Γz) = ∇×V equals zero, (2.3) is homogeneous
with respect to γ , and if the wave field starts out irrotational, it will remain irrotational.
For waves riding a current field with vorticity, vorticity will develop in the wave field
as well. We therefore derive a current modified nonlinear Schrödinger equation that
allows a small amount of vorticity.

Let a, kc and ωc be the characteristic amplitude, wavenumber and angular
frequency of the surface waves. We employ the steepness of the waves as a small
ordering parameter in the following, ε = kca � 1, thus kcη = O(ε) and v kc

ωc
= O(ε).

The horizontal current velocities are assumed just small enough to avoid collinear
reflection of the waves, (U, V )kc/ωc = O(ε). The vertical current velocity is assumed
negligible Wkc/ωc = O(ε2). It follows from the Bernoulli equation that the surface
displacement induced by the current is small, kcζ = O(ε2). Let the horizontal and
vertical length scales L of the current be longer than a characteristic wavelength
so that 1/(kcL) = O(ε). The horizontal vorticities (Γx, Γy)/ωc = O(ε3) and the vertical
vorticity Γz/ωc = O(ε2) are one order smaller than the vorticities assumed by Mei
(1989). In the following all equations, variables and sizes are scaled according to the
above assumptions, and made dimensionless using the characteristic length and time
scales of the wave field.

The wave field is represented by perturbation series for the surface displacement
η, the velocity v and the pressure p (see Appendix). The perturbation series for the
surface displacement is given by

η = ε2η̄ +
1

2

(
Bei(x−t) + εB2e

2i(x−t) + ε2B3e
3i(x−t) + · · · + c.c.

)
, (2.4)

where η̄ is the mean surface displacement, x is the principal propagation direction and
B , B2 and B3 are the first, second and third harmonics of the surface displacement.
We have fixed the characteristic wavenumber appropriate for waves undisturbed by
current, therefore the entire effect of refraction is represented by the modulation of
B . The perturbation series for the velocity and the pressure are similar.

Through Taylor expansion around z =0 and perturbation expansion (see Appendix)
we get the following dimensionless Schrödinger equation with current terms, NLSC,



270 K. B. Hjelmervik and K. Trulsen

for the first harmonic of the surface elevation of the waves:

∂B

∂x
= (L+C+N)B, (2.5)

where L contains the linear terms with constant coefficients, C contains the linear
terms with variable coefficients and N is the nonlinear term:

L = −2
∂

∂t
− i

∂2

∂t2
+

i

2

∂2

∂y2
,

C = −2iU + 6U
∂

∂t
+ 5iU 2 − 2V

∂

∂y
− ∂U

∂x
,

N = −i|B|2.

Equation (2.5) should be valid for evolution over a distance x = O(ε−2) and for
modulations of spectral width O(ε) in y and t .

All the terms in (2.5) may be derived from Stocker & Peregrine (1999) by rescaling
their current even though they used potential theory. Our horizontal current is one
order stronger, but their equation is of Dysthe order. When vorticity is allowed, new
terms will appear if (2.5) is taken to the next order. To obtain (2.5) from (20) in
Stocker & Peregrine (1999) one has to recall that the first is written in terms of the
free-surface envelope, where as the latter is written in terms of the envelope of the
potential.

3. Model set-up
Simulations are performed with a second order split-step scheme based on Lo &

Mei (1985) and Muslu & Erbay (2004). A Fourier method is used on the linear terms
with constant coefficients LB . And a second-order Runge–Kutta scheme is used on
the nonlinear term and the linear terms with variable coefficients (C+N)B . The wave
field is assumed periodic with respect to y and t . The integrating step used is 	x = 0.2.
Each ensemble consists of 30 simulations.

The Fourier transform with respect to y and t is given by

B̂ij =
1

MN

M−1∑
m=0

N−1∑
n=0

Bmne
i(Ωj tn−kyiym), (3.1)

where ym = m	y, tn = n	t , kyi = i	ky and Ωj = j	ω. The length of each time
series is T =2000. Using N =1024 times, the time step is 	t = T/N ≈ 1.95 and
	ω = 2π/T ≈ 0.0031. The width of the simulation area y = [−40, 40], with M = 32
points, gives 	y = 2.5 and 	ky ≈ 0.079.

Both unidirectional and short-crested incoming waves with Gaussian spectrum have
been studied. The Fourier amplitudes at x = 0 are given respectively by

B̂j = ε

√
	ω√
2πσω

e
−

Ω2
j

4σ2
ω

+iψj
, (3.2)

B̂ij = ε

√
	ky	ω

2πσyσω

e
−

Ω2
j

4σ2
ω

−
k2
y,i

4σ2
y

+iψij

. (3.3)

The frequency is given by ωj = 1 + Ωj . The phases ψij are statistically independent
and uniformly distributed on the interval [0, 2π). We have chosen ε = 0.1. σω and
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σy are bandwidths in Fourier room. We have studied σω = 0.05, 0.1 and 0.2. For the
short-crested cases we have chosen σy = 0.05 and 0.2 to study different crest lengths.

The NLSC equation (2.5) may be used for a large range of prescribed currents.
Here we have chosen two types; a narrow surface current jet (§ 4.1) given by

U =

⎧⎪⎨
⎪⎩

0 when x � X, and/or |y| � Y

U0 sin2
(

π
2	X

(x − X)
)
cos2

(
πy

2Y

)
when x > X, and x < X + 	X

U0 cos2
(

πy

2Y

)
when x � X + 	X

, (3.4)

and a transversally uniform current (§ 4.3) given by

U =

⎧⎪⎨
⎪⎩

0 when x � X

U0 sin2
(

π
2	X

(x − X)
)

when x > X, and x < X + 	X

U0 when x � X + 	X

. (3.5)

The wave field is allowed about 32 wavelengths, x = [0, X) where X = 200, to develop
before it encounters a current. Y =10 is half the width of the jet. And 	X = 100 is
the current build-up length. In this paper we compare three cases for the current:
no current, cocurrent with U0 = 0.05 and opposing current with U0 = − 0.05 which is
not enough to reflect the waves, but sufficient to study the characteristic features of
opposing currents. More current cases are studied in Hjelmervik & Trulsen (2009).

Simulations and observations of tidal currents suggest that establishing current
jets are more fanned in than terminating current jets are fanned out (Hjelmervik,
Ommundsen & Gjevik 2005). Test simulations show that the current across the jet
V , needed to satisfy the continuity equation, has negligible impact on the results and
may thus be set to zero in the NLSC equation. Alternatively, the continuity equation
can be satisfied by a vertical current W , which does not appear within the truncation
level of the NLSC equation at the surface.

4. Results
For each of the simulated ensembles we compute the significant wave height Hs ,

the kurtosis κ , of the surface displacement and the amount of freak waves from
time series at fixed locations. Statistical features are calculated using the envelope to
first order. The free surface may be reconstructed to second order by (2.4), using the
first harmonic term proportional to B and the second harmonic term proportional
to B2. Since the second harmonic complex envelope B2 is not an explicit function
of the current field according to (A 28b), the contribution from bound waves are
not expected to modify wave statistics of the free waves differently from the case
of no current within the truncation level of (2.5). Second-order harmonic bound
contributions without currents are well known from the litterature (Longuet-Higgins
& Stewart 1961; Tayfun 1980; Socquet-Juglard et al. 2005, and others). We shall limit
our consideration of wave statistics to contributions from free waves only:

Hs(x, y) = 4

√
η2 = 4

√
1

2
|B|2, (4.1)

κ(x, y) =
η4

η2
2

=
3

2

|B|4

|B|2
2
. (4.2)

The overbar represents combined time and ensemble averaging. The significant wave
height equals four times the standard deviation of the surface elevation. The kurtosis
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Figure 1. The significant wave height (a) and kurtosis (b) with no current (— —), and in
the centre of current jets with U0 = − 0.05 (——) and 0.05 (- - -) for unidirectional and
short-crested (σy = 0.05) incoming waves with σω = 0.1. For the case of no current, there are
three curves on top of each other in (a).

equals three when the surface displacement is Gaussian distributed. We define a wave
as freak when its wave height exceeds 2.2 times the significant wave height Hs:

H = 2|B| > 2.2Hs. (4.3)

According to the Rayleigh distribution for wave height, 0.006 % of the waves should
be freak.

4.1. Current jet

Suppose that the waves meet a collinear surface current jet given by (3.4).
The significant wave height increases for waves encountering an opposing current

and decreases for waves encountering a cocurrent (figure 1a). The significant wave
height oscillates before stabilizing. Test simulations with wider simulation areas show
that the oscillations appearing on the opposing current jet do not depend on the
width of the simulation area, but on the width and form of the current jet, while the
oscillations after 64 wavelengths (x ≈ 400) on the cocurrent may be due to restrictions
on the simulation area.

The significant wave height is larger in the centre and smaller at the sides of an
opposing current jet, while it is smaller in the centre and larger at the sides of a
cocurrent jet (figure 2). These results are very similar for different values of σω, and
qualitatively equal for any cross section after the current jet is introduced. When
waves encounter an opposing current jet, energy is transferred from the sides of the
jet into the centre of the jet resulting in larger significant wave height in the centre
of the jet and smaller at the jet sides. More energy is transferred in linear than in
nonlinear simulations, and the longer the incoming crest lengths are. When waves
encounter a cocurrent jet, the energy is transferred in the opposite direction, resulting
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Figure 3. The kurtosis (a, c) and amount of local freak waves (b, d ) for unidirectional
incoming waves at x = 300 across current jets with U0 = −0.05 (a, b) and 0.05 (c, d ). Incoming
σω = 0.05 (circle), 0.1 (cross) and 0.2 (square). Nonlinear simulations.

in larger significant wave height at the jet sides and smaller in the centre of the jet.
Again more energy is transferred in linear than in nonlinear simulations, and the
longer the incoming crest lengths are.

The kurtosis deviates little from three in linear simulations and in nonlinear
simulations with short-crested incoming waves (figure 1b). In nonlinear simulations
with unidirectional incoming waves, the kurtosis increases to a maximum before
decreasing to a stable level. The stable level is reached before the current jet
is introduced, and increases with decreasing incoming bandwidth in frequency
(figure 3a,c). Simulations with different incoming crest lengths show that larger
crest lengths result in larger deviations in the kurtosis both before and shortly after
the build-up of the current jet.

When unidirectional waves meet an opposing current jet, the kurtosis decreases in
the centre of the jet where the significant wave height grows. The largest kurtosis
across the jet is at the sides of the jet where the significant wave height is smallest.
When unidirectional waves meet a cocurrent jet, the kurtosis decreases at the sides
of the jet where the significant wave height grows. In this case the largest kurtosis is
in the centre of the jet where the significant wave height is smallest. Test simulations
with different build-up lengths, 	X = 50, 100, 200 and 300, show that smaller current
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Figure 4. The kurtosis (a, c) and amount of local freak waves (b, d ) for incoming short-crested
waves (σy = 0.05) at x = 300 across current jets with U0 = −0.05 (a, b) and 0.05 (c, d ). Incoming
σω =0.05 (circle), 0.1 (cross) and 0.2 (square). Nonlinear simulations.

gradients along the waves ∂U/∂x results in smaller changes in the kurtosis along the
jet |∂κ/∂x| and smaller maximums of the kurtosis across the jet.

Since the current jet is narrower than ten wavelengths, the unidirectional incoming
waves behave as short-crested waves (Gramstad & Trulsen 2007) and the kurtosis
decreases as the wave field is adjusted to the current jet (figure 1b). After the wave
field is adjusted to the current jet, the kurtosis is close to three. The significant wave
height in the centre of the jet is still large in the opposing current jet and small
in the cocurrent jet. The adjustment length of waves without current is well known
(Onorato et al. 2002; Socquet-Juglard et al. 2005; Gramstad & Trulsen 2007). Our
numerical results suggest that the adjustment length for waves on collinear current
jets can be considerably longer than for waves without currents.

The amount of freak waves is represented well by the kurtosis in our study (figure 3).
The largest amount of freak waves is at the sides of the opposing current jet, and in
the centre of the cocurrent jet (figure 3b,d ). Small incoming bandwidths in frequency
results in larger maximum of the kurtosis and amount of freak waves, while the
significant wave height seems nearly independent of initial bandwidth (Hjelmervik &
Trulsen 2009). The waves are large in the centre of an opposing current jet, but the
proportion that is freak, is smaller than away from the current. In linear simulations
the amount of freak waves is less than 0.04 % at all locations both along and across the
jet, but our data material seems to be insufficient to calculate a more exact percentage.
In nonlinear simulations with short-crested incoming waves (σy =0.05) the amount
of freak waves is less than 0.15 % (figure 4b,d ). The longer the incoming crest lengths
the larger kurtosis and amount of freak waves. Gramstad & Trulsen (2007) performed
a large number of simulations with a modified nonlinear Schrödinger equation in
order to reveal how the occurrence of freak waves on deep water depends on crest
lengths. They found a clear difference between short-crested and long-crested waves,
distinguished by a limiting crest length of approximately ten wavelengths (σy ≈ 0.1).
Our results indicate that a similar qualitative difference exists when a current jet is
introduced. The longer the crest lengths, the stronger the variations in significant
wave height, kurtosis and amount of freak waves across the jet.
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4.2. Space or time averaged significant wave height

Our definition of freak waves by (4.3) requires knowledge of the significant wave
height Hs . Since the waves propagate in an inhomogeneous medium, there are at least
three different strategies for determining Hs . The strategy which we recommend and
have adopted here is to determine Hs at fixed locations of constant current, i.e. a
local significant wave height. This method corresponds to classical field measurements
taken at fixed locations. A second strategy would be to determine a global significant
wave height by spatial averaging over the inhomogeneous medium. This method
likely corresponds to analysis based on satellite imaging of the ocean surface. A third
strategy would be to define an undisturbed significant wave height for a wave field
unaffected by the inhomogeneities. This method corresponds to the work done by,
e.g. Lavrenov (1998).

Lavrenov (1998) considered the propagation of swell from the southern latitudes
into the opposing Agulhas current. He found that the mean wave height is larger
in the centre of the jet than at the jet sides. Our simulations show that this applies
for both linear and nonlinear simulations, and both unidirectional and short-crested
incoming waves. He suggested that the amount of freak waves is large in the centre
of the jet since the mean wave height is large there.

Figures 5 and 6 show that the amount of ‘freak’ waves strongly depends on the
strategy used to define them. The kurtosis is a good indicator for freak waves only if
the local significant wave height is used to define them. Then the freak wave amount
is large at locations with a large amount of unexpectedly high waves compared to
what is expected at the same locations, and when the waves are adjusted to the
current jet, the freak wave amount is small. If the undisturbed significant wave height



276 K. B. Hjelmervik and K. Trulsen

Build-up Full current

Build-up Full current

0

1.08

1.06

1.04

1.02

1.00

0.98

0.96

0.94

2.5

2.0

1.5

1.0

0.5

0

200100 300 400 500 600

200100

x along the current

300 400 500 600

K
u
rt

o
si

s 
–
 3

H
s/

H
s,

(x
 =

 0
)

Longcrested

Shortcrested

(a)

(b)

Figure 7. The significant wave height (a) and kurtosis (b) for unidirectional and short-crested
(σy = 0.05) incoming waves with no current (— —), and on transversally uniform currents
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is used to define the freak waves, the local significant wave height is a good indicator
for the freak wave amount. Then the freak wave amount is large at locations with
large waves compared to wave heights elsewhere, and when the waves are adjusted
to the current jet, the freak wave amount is still large. We believe it is preferable
to reserve the term ‘freak’ waves only to those waves that are surprising even after
knowledge of inhomogeneities are taken into account. To ensure that a freak wave
belongs to the upper tail of the probability distribution, we thus recommend the local
significant wave height for application to the criterion (4.3).

4.3. Transversally uniform current

Suppose that the waves meet a transversally uniform current given by (3.5).
The significant wave height (figure 7a) increases when the waves meet an increasing

opposing current and decreases when the waves meet an increasing cocurrent. Since
the current does not cause any energy transfer transversally, the changes are smaller
than when the waves meet a current jet (figure 1a). The significant wave height is
near constant after the build-up of the current.

The kurtosis (figure 7b) for long-crested waves increases slightly when the significant
wave height increases, and decreases slightly when the significant wave height
decreases. This effect can hardly be seen for short-crested waves. After the current
build–up the unidirectional incoming waves are still unidirectional and the kurtosis
stays at the same level. This is in contradiction to the case where unidirectional
incoming waves meet a current jet (figure 1b). Then the kurtosis decreases with
increasing significant wave height, increases with decreasing significant wave height,
and decreases after the build-up. The kurtosis for unidirectional incoming waves with
no current (figures 1b and 7b) stays at a high level, indicating that the cubic nonlinear
Schrödinger equation produces larger kurtosis than the modified Schrödinger equation
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Figure 8. The amount of freak waves for unidirectional incoming waves with no current
(— —), and on transversally uniform currents with U0 = − 0.05 (——) and 0.05 (- - -).
Incoming σω = 0.1. Nonlinear simulations.

by Trulsen & Dysthe (1996) derived to next order (see Gramstad & Trulsen 2007,
figure 2).

On a transversally uniform current the amount of freak waves (figure 8) is well
indicated by the kurtosis also when the undisturbed significant wave height is used
to calculate the amount of freak waves. If the undisturbed significant wave height
is used, there are slightly more freak waves in an opposing current and less in a
cocurrent, than if the local significant wave height is used. Since the current does not
introduce transversal energy transfer, the freak wave amounts are smaller than if the
waves meet a current jet (figure 5).

5. Conclusion
We have derived a nonlinear Schrödinger equation suitable for spatial wave

propagation on inhomogeneous currents. We have used this equation for Monte Carlo
simulations to investigate wave statistics on inhomogeneous currents, in particular
on narrow current jets. Several surprising features of nonlinear wave evolution on
nonuniform current were revealed. Wave statistics has been derived based on the
envelope to the first order, which was used to estimate the wave height correct to
second order.

The evolution and statistics of both short- and long-crested waves on transversally
uniform currents is found to be qualitatively different from waves on current jets.

Considering waves that approach an opposing current jet, we find that the amount
of freak waves is minimum in the centre of the jet where the wave heights are largest,
while the amount of freak waves is maximum at the sides of the jet where the wave
heights are smallest.

The definition of both significant wave height and of freak waves can be ambiguous
in inhomogeneous media. We recommend that local definitions are used to ensure that
freak waves remain surprising even after classical knowledge of the inhomogeneous
medium has been taken into account.

We see evidence that the distances over which a wave field has to propagate in
order to be adjusted to the medium can become much longer in the presence of
inhomogeneous currents than in the absence of currents. This may be an important
consideration for the appropriate choice of wave models in coastal waters.

We thank professors Kristian B. Dysthe and Bjørn Gjevik for fruitful discussions.
Several referees provided useful comments on preliminary versions of the manuscript.
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Appendix. Derivation of the NLSC equation
Taylor expansions around z = 0 gives the surface boundary equations, (2.2a–b), on

the form:

∂η

∂t
+ vtot · ∇(η + ζ ) + (η + ζ )

∂vtot

∂z
· ∇(η + ζ ) +

1

2
(η + ζ )2

∂2vtot

∂z2
· ∇(η + ζ )

= w + W + (η + ζ )
∂

∂z
(w + W ) +

1

2
(η + ζ )

∂2

∂z2
(w + W ) + · · · , (A 1a)

ptot + (η + ζ )
∂ptot

∂z
+

1

2
(η + ζ )2

∂2ptot

∂z2
+ · · · = pa. (A 1b)

The waves are assumed on deep water, that is, v, p → 0 as z → −∞.
In accordance with the scaling assumptions from § 2, all equations, variables and

sizes in the following are made dimensionless using the characteristic length and time
scales of the wave field, so that kcx → x, εkcx → x̄, ωct → t , kcη → εη, kcζ → ε2ζ ,
kc

ωc
u → εu, kc

ωc
(U, V ) → ε(U, V ), kc

ωc
W → ε2W , kc

ρg
p → εp and kc

ρg
P → ε2P .

The scaled Euler equation for the waves (2.1) to the third order of ε is

∂u

∂t
+ ε

(
U

∂u

∂x
+ V

∂u

∂y
+ v · ∇u

)
+ ε2

(
u

∂U

∂x̄
+ v

∂U

∂ȳ
+ W

∂u

∂z

)
= −∂p

∂x
, (A 2a)

∂v

∂t
+ ε

(
U

∂v

∂x
+ V

∂v

∂y
+ v · ∇v

)
+ ε2

(
u

∂V

∂x̄
+ v

∂V

∂ȳ
+ W

∂v

∂z

)
= −∂p

∂y
, (A 2b)

∂w

∂t
+ ε

(
U

∂w

∂x
+ V

∂w

∂y
+ v · ∇w

)
+ ε2W

∂w

∂z
= −∂p

∂z
. (A 2c)

The scaled equation for the divergence of the Euler equation for the waves (2.1) to
the third order of ε is

ε

((
∂u

∂x

)2

+

(
∂v

∂u

)2

+

(
∂w

∂z

)2

+ 2
∂u

∂y

∂v

∂x
+ 2

∂u

∂z

∂w

∂x
+ 2

∂v

∂z

∂w

∂y

)

+ 2ε2

(
∂u

∂x

∂U

∂x̄
+

∂u

∂y

∂V

∂x̄
+

∂v

∂x

∂U

∂ȳ
+

∂v

∂y

∂V

∂ȳ

)
= −∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
. (A 3)

The scaled surface equations for the waves (A 1a–b) to the third order of ε are

∂η

∂t
+ε(v + V ) · ∇η + ε2η

∂v

∂z
· t∇η = w + εη

∂w

∂z
+ ε2

(
ζ

∂w

∂z
+

1

2
η2 ∂2w

∂z2

)
, (A 4a)

p − η + εη
∂p

∂z
+ ε2

(
ζ

∂p

∂z
+

1

2
η2 ∂2p

∂z2

)
= 0. (A 4b)

The wave field is represented by perturbation series for the surface displacement η,
the velocity v and the dynamic pressure p:

η = ε2η̄ + 1
2

(
B1e

i(x−t) + εB2e
2i(x−t) + · · · + c.c.

)
v = ε2v̄ + 1

2

(
v1 e

i(x−t) + εv2 e
2i(x−t) + · · · + c.c.

)
p = εp̄ + 1

2

(
p1e

i(x−t) + εp2e
2i(x−t) + · · · + c.c.

)
⎫⎪⎬
⎪⎭ . (A 5)
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We shall assume that the waves are modulated on the slow spatial scales x̄ and
ȳ and a correspondingly slow time scale εt = t̄ . Thus η̄ = η̄(x̄, ȳ, t̄), v̄ = v̄(x̄, ȳ, z, t̄),
and p̄ = p̄(x̄, ȳ, z, t̄) are the mean surface displacement, mean induced velocity and
mean dynamic pressure respectively, while Bn = Bn(x̄, ȳ, t̄), vn = vn(x̄, ȳ, z, t̄)
and pn = pn(x̄, ȳ, z, t̄) are the nth harmonics of the surface displacement, induced
current and dynamic pressure, respectively. The characteristic wavenumber is fixed
appropriate for waves undisturbed by current, therefore the entire effect of refraction
is represented by the modulation of B1.

The horizontal vorticities and the vertical vorticity are all one order higher than
the vorticities used by Mei (1989), that is, (Γx, Γy) = O(ε3) and Γz = O(ε2). Since the
vorticity is assumed to be small, the chosen order of the mean functions are supported
by Dysthe (1979). Both the mean functions and the harmonics, are perturbed:

η̄ = η̄2 + · · · , Bn = Bn0 + εBn1 + ε2Bn2 + · · ·
v̄ = v̄2 + · · · , vn = vn0 + εvn1 + ε2vn2 + · · ·
p̄ = p̄1 + εp̄2 + · · · , pn = pn0 + εpn1 + ε2pn2 + · · ·

⎫⎪⎬
⎪⎭ . (A 6)

A.1. First-order terms

The first harmonic terms of first order of ε for the divergence of the Euler equation
(A 3) are

p10 − ∂2p10

∂z2
= 0, (A 7)

which has the general solution

p10 = A10(x̄, ȳ, t̄)ez. (A 8)

The first harmonic terms of first order of ε in the surface equations (A 4a–b) give

A10 = B10. (A 9)

The first harmonic terms of first order of ε in the Euler equation (A 2a–c) then
give, respectively,

u10 = B10e
z, (A 10a)

v10 = 0, (A 10b)

w10 = −iB10e
z. (A 10c)

A.2. Second-order terms

A.2.1. Zeroth harmonic

The zeroth harmonic terms of second order of ε for the z component of the Euler
equation (A 2c) are

i

4
u10w

∗
10 +

i

4
u∗

10w10 +
1

4
w10

∂w∗
10

∂z
+

1

4
w∗

10

∂w10

∂z
= −∂p̄1

∂z
. (A 11)

Using the results (A 10) from first order, gives

|B10|2e2z = −∂p̄1

∂z
, (A 12)
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which has the solution

p̄1 = Ā1(x̄, ȳ, t̄) − 1

2
|B10|2e2z. (A 13)

The zeroth harmonic terms of second order of ε in the dynamic surface
equation (A 4b) are

p̄1 +
1

4
B10

∂p∗
10

∂z
+

1

4
B∗

10

∂p10

∂z
= 0, at z = 0. (A 14)

Using the results (A 8–A 9) from first order and the solution for p̄1 (A 13), gives
Ā1 = 0.

A.2.2. First harmonic

The first harmonic terms of second order of ε for the divergence of the Euler
equation (A 3) are

2i
∂p10

∂x̄
= p11 − ∂2p11

∂z2
. (A 15)

Using the results (A 8–A 9) from leading order, gives

2i
∂B10

∂x̄
ez = p11 − ∂2p11

∂z2
, (A 16)

which has the solution

p11 = A11(x̄, ȳ, t̄)ez − i
∂B10

∂x̄
zez. (A 17)

The first harmonic terms of second order of ε in the dynamic surface equation (A 4b)
give

A11 = B11. (A 18)

The first harmonic terms of second order of ε in the Euler equation and the
kinematic surface equation (A 2a–c, A 4a) are, respectively,

∂u10

∂t̄
− iu11 + iu10U = −∂p10

∂x̄
− ip11, (A 19a)

∂v10

∂t̄
− iv11 + iv10U = −∂p10

∂ȳ
, (A 19b)

∂w10

∂t̄
− iw11 + iw10U = −∂p11

∂z
, (A 19c)

∂B10

∂t̄
− iB11 + iUB10 = w11, at z =0. (A 19d)

Using the results (A 8)–(A 10) from first order and the solution for p11 (A 17)–(A 18),
leads to the current modified Schrödinger equation to second order

∂B10

∂x̄
+ 2

∂B1,0

∂t̄
+ 2iUB10 = 0, (A 20)
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and the reconstruction formulas

u11 = B11e
z + i

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez, (A 21a)

v11 = −i
∂B10

∂ȳ
ez, (A 21b)

w11 = −iB11e
z +

(
∂B10

∂t̄
+ iUB10

)
(1 + 2z)ez. (A 21c)

A.2.3. Second harmonic

The second harmonic terms of second order of ε for the divergence of the Euler
equation (A 3) are

−1

2
u2

10 +
1

2

(
∂w10

∂z

)2

+ i
∂u10

∂z
w10 = 4p20 − ∂2p20

∂z2
. (A 22)

Using the results (A 10) from leading order, gives

0 = 4p20 − ∂2p20

∂z2
, (A 23)

which has the solution

p20 = A20e
2z. (A 24)

The second harmonic terms of second order of ε in the dynamic surface equation
(A 4b) are

p20 − B20 +
1

2
B10

∂p10

∂z
= 0, at z = 0. (A 25)

Using the results (A 8)–(A 9) from leading order and the solution for p20 (A 24), gives:

A20 = B20 − 1

2
B2

10. (A 26)

The second harmonic terms of second order of ε in the Euler equation and the
kinematic surface equation (A 2a–c), (A 4) are, respectively,

−iu20 +
i

4
u2

10 +
1

4
w10

∂u10

∂z
= −ip20, (A 27a)

−iv20 +
i

4
u10v10 +

1

4
w10

∂v10

∂z
= 0, (A 27b)

−iw20 +
i

4
u10w10 +

1

4
w10

∂w10

∂z
= −1

2

∂p20

∂z
, (A 27c)

−iB20 +
i

4
u10 =

1

2
w20 +

1

4
B10

∂w10

∂z
, at z =0. (A 27d)

Using the results (A 10) from first order and the solution for p20 (A 24), (A 26), gives

u20 = v20 = w20 = p20 = 0, (A 28a)

B20 =
1

2
B2

10. (A 28b)

Note that the second-order contributions is not explicit functions of the current field.
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A.3. Third-order terms

The first harmonic terms of third order of ε for the divergence of the Euler equation
(A 3) are

u20u
∗
10 +

1

2

∂w20

∂z

∂w∗
10

∂z
− i

2

∂u20

∂z
w∗

10 + i
∂u∗

10

∂z
w20 + iu10

∂U

∂x̄
+ iv10

∂U

∂ȳ

= −1

2

∂2p10

∂x̄2
− i

∂p11

∂x̄
+

1

2
p12 − 1

2

∂2p10

∂ȳ2
− 1

2

∂2p12

∂z2
. (A 29)

Using the results (A 8)–(A 10), (A 17)–(A 18), (A 28) from first and second order, gives

∂2p12

∂z2
− p12 = −2i

∂B11

∂x̄
ez − ∂2B10

∂x̄2
ez − ∂2B10

∂ȳ2
ez − 2

∂2B10

∂x̄2
zez − 2iB10

∂U

∂x̄
ez, (A 30)

which has the solution

p1,2 = A12(x̄, ȳ, z̄, t̄)ez + α(x̄, ȳ, z̄, t̄)zez + β(x̄, ȳ, t̄)z2ez, (A 31)

where

α = −i
∂B11

∂x̄
− 1

2

∂2B10

∂ȳ2
− iB10

∂U

∂x̄
,

β = −1

2

∂2B10

∂x̄2
.

The first harmonic terms of third order of ε in the dynamic surface equation (A 4b)
are

1

2
p12 − 1

2
B12 +

1

4
B20

∂p∗
10

∂z
+

1

4
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10

∂p20
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∂p̄1

∂z

+
1

2
ζ
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16
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∂2p∗
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∂z2
+

1

8
|B10|2 ∂2p10

∂z2
= 0, at z = 0. (A 32)

Using the results (A 8)–(A 9), (A 13), (A 28)–(A 28) from first and second order, and
the solution for p12 (A 31), gives

A12 = B12 +
3

8
B2

10B
∗
10 − B10ζ, at z =0. (A 33)

The first harmonic terms of third order of ε in the Euler equation and the kinematic
surface equation (A 2a–c), (A 4a) are, respectively,
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∂u11
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2
u12 +

1

2
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U +
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2
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2
u10

∂U

∂x̄
+

1

2
v10

∂U

∂ȳ
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Extreme waves on collinear currents 283
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10
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|B10|2 ∂2w10
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, at z = 0. (A 34d)

Combining these equations with the results (A 10), (A 17)–(A 18), (A 21), (A 28) from
first and second order, and the solution for p12 (A 31, A 33), gives

0 =
∂B11

∂x̄
+ 2

∂B11

∂t̄
+ i

∂2B10

∂t̄2
− i

2

∂2B10

∂ȳ2
+ iB2

10B
∗
10

+ 2iB11U − 6
∂B10

∂t̄
U − 5iB10U

2 + 2
∂B10

∂ȳ
V + B10

∂U

∂x̄
, (A 35)

which combined with (A 20) leads to the space evolution of the current modified cubic
nonlinear Schrödinger equation, NLSC, (2.5) where B = B1 and the bars are dropped
to simplify the notation.

More on the derivation of the NLSC equation can be found in Hjelmervik &
Trulsen (2009).
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